Multiple Operator-valued Kernel Learning
نویسندگان
چکیده
Positive definite operator-valued kernels generalize the well-known notion of reproducing kernels, and are naturally adapted to multi-output learning situations. This paper addresses the problem of learning a finite linear combination of infinite-dimensional operator-valued kernels which are suitable for extending functional data analysis methods to nonlinear contexts. We study this problem in the case of kernel ridge regression for functional responses with an `r-norm constraint on the combination coefficients (r ≥ 1). The resulting optimization problem is more involved than those of multiple scalar-valued kernel learning since operator-valued kernels pose more technical and theoretical issues. We propose a multiple operator-valued kernel learning algorithm based on solving a system of linear operator equations by using a block coordinate-descent procedure. We experimentally validate our approach on a functional regression task in the context of finger movement prediction in brain-computer interfaces.
منابع مشابه
Refinement of Operator-valued Reproducing Kernels
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occu...
متن کاملOnline Learning with Multiple Operator-valued Kernels
We consider the problem of learning a vector-valued function f in an online learning setting. The function f is assumed to lie in a reproducing Hilbert space of operator-valued kernels. We describe two online algorithms for learning f while taking into account the output structure. A first contribution is an algorithm, ONORMA, that extends the standard kernel-based online learning algorithm NOR...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملAdaptive Kernel Based Machine Learning Methods
During the support period July 1, 2011 June 30, 2012, seven research papers were published. They consist of three types: • Research that directly addresses the kernel selection problem in machine learning [1, 2]. • Research that closely relates to the fundamental issues of the proposed research of this grant [3, 4, 5, 6]. • Research that is in the general context of computational mathematics [7...
متن کاملStability of Multi-Task Kernel Regression Algorithms
We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning problems with nonscalar outputs like multi-task learning and structured output prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012